Bewegte Durchschnitte 13 Von Casey Murphy. Senior Analyst ChartAdvisor Technische Analyse gibt es seit Jahrzehnten und im Laufe der Jahre haben die Händler die Erfindung der Hunderte von Indikatoren gesehen. Während einige technische Indikatoren populärer sind als andere, haben sich wenige als objektiv, zuverlässig und nützlich wie der gleitende Durchschnitt erwiesen. Gleitende Durchschnitte kommen in verschiedenen Formen, aber ihre zugrunde liegende Zweck bleibt die gleiche: zu helfen, technische Händler verfolgen die Tendenzen der finanziellen Vermögenswerte durch Glättung der Tag-zu-Tag-Preisschwankungen oder Lärm. Indem Trends identifiziert werden, erlauben die gleitenden Durchschnittswerte den Händlern, diese Trends zu ihren Gunsten zu nutzen und die Anzahl der Gewinne zu steigern. Wir hoffen, dass Sie am Ende dieses Tutorials ein klares Verständnis davon haben, warum bewegte Durchschnitte wichtig sind, wie sie berechnet werden und wie Sie sie in Ihre Handelsstrategien einbinden können. Nichts in dieser Publikation soll Rechts-, Steuer-, Wertpapier - oder Anlageberatung darstellen, weder eine Stellungnahme zur Angemessenheit einer Anlage noch eine Aufforderung jeglicher Art. Die in dieser Publikation enthaltenen allgemeinen Informationen dürfen ohne vorherige schriftliche Genehmigung durch einen lizenzierten Fachmann nicht bearbeitet werden. Subscribe to News Für die neuesten Erkenntnisse und Analysen nutzenMoving Averages: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Mittelwerte verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art durchschnittlich bewegen (allgemein in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl vergangener Datenpunkte berechnet. Sobald bestimmt ist, wird der resultierende Mittelwert dann auf einem Diagramm aufgetragen, um Händler zu ermöglichen, bei geglätteten Daten zu suchen, anstatt sich auf den Tag-zu-Tag Preisschwankungen, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, in geeigneter Weise als ein einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel aus einer gegebenen Menge von Werten berechnet. Um zum Beispiel eine grundlegende 10-Tage gleitenden Durchschnitt zu berechnen würden Sie die Schlusskurse aus den letzten 10 Tagen addieren und dann teilen Sie das Ergebnis durch 10. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung zu geben, wie ein Gewinn für den letzten 10 Tagen relativ preiswert ist. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass als neue Werte verfügbar sind, müssen die ältesten Datenpunkte aus der Menge und neue Datenpunkte fallen gelassen werden müssen, kommen in sie zu ersetzen. Somit bewegt sich der Datensatz ständig, um neue Daten, wie er verfügbar wird, zu berücksichtigen. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Informationen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick darauf werfen, wie sich diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie bei der Schaffung der durchschnittlichen wollen. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Durchschnitte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: So verwenden Sie Them Subscribe to News Für die neuesten Erkenntnisse und Analysen nutzen Dank für die Unterzeichnung bis zu Investopedia Insights - News to Use. Calculating Moving Average Dieses VI berechnet und zeigt den gleitenden Durchschnitt, mit einer vorgewählten Zahl. Zunächst initialisiert das VI zwei Schieberegister. Das obere Schieberegister wird mit einem Element initialisiert und fügt dann kontinuierlich den vorherigen Wert mit dem neuen Wert hinzu. Dieses Schieberegister hält die Summe der letzten x Messungen. Nach dem Teilen der Ergebnisse der Add-Funktion mit dem vorgewählten Wert berechnet das VI den gleitenden Mittelwert. Das untere Schieberegister enthält ein Array mit der Dimension Average. Dieses Schieberegister hält alle Werte der Messung. Die Ersatzfunktion ersetzt nach jeder Schleife den neuen Wert. Dieses VI ist sehr effizient und schnell, weil es die replace-Element-Funktion innerhalb der while-Schleife verwendet, und es initialisiert das Array, bevor es die Schleife eintritt. Dieses VI wurde in LabVIEW 6.1 erstellt. Lesezeichen amp ShareCommunity Dieses VI enthält fünf Elementabschnitte des Input-Arrays.160 Die ersten vier Iterationen werden auf der Grundlage der Anzahl der Werte berechnet, die in die for-Schleife übergeben wurden. Caveats and Additional Notes Dieses VI ist so programmiert, dass es den Durchschnitt der vorherigen 5 Elemente in einem Array berechnet.160 Um den Durchschnitt von mehr als 5 Elementen zu erhalten, müssen zusätzliche Schieberegisterausgangsklemmen hinzugefügt werden.160 Auch der Wert im Vergleich zu Sollte die Anzahl der Loop-Iterationen geändert werden, um die Anzahl der Schieberegisterausgänge zu reflektieren. Moving Averages 13 Von Casey Murphy. Senior Analyst ChartAdvisor Technische Analyse gibt es seit Jahrzehnten und im Laufe der Jahre haben die Händler die Erfindung der Hunderte von Indikatoren gesehen. Während einige technische Indikatoren populärer sind als andere, haben sich wenige als objektiv, zuverlässig und nützlich wie der gleitende Durchschnitt erwiesen. Gleitende Durchschnitte kommen in verschiedenen Formen, aber ihre zugrunde liegende Zweck bleibt die gleiche: zu helfen, technische Händler verfolgen die Tendenzen der finanziellen Vermögenswerte durch Glättung der Tag-zu-Tag-Preisschwankungen oder Lärm. Indem Trends identifiziert werden, erlauben die gleitenden Durchschnittswerte den Händlern, diese Trends zu ihren Gunsten zu nutzen und die Anzahl der Gewinne zu steigern. Wir hoffen, dass Sie am Ende dieses Tutorials ein klares Verständnis davon haben, warum bewegte Durchschnitte wichtig sind, wie sie berechnet werden und wie Sie sie in Ihre Handelsstrategien einbinden können. Nichts in dieser Publikation soll Rechts-, Steuer-, Wertpapier - oder Anlageberatung darstellen, weder eine Stellungnahme zur Angemessenheit einer Anlage noch eine Aufforderung jeglicher Art. Die in dieser Publikation enthaltenen allgemeinen Informationen dürfen ohne vorherige schriftliche Genehmigung durch einen lizenzierten Fachmann nicht bearbeitet werden. Abonnieren Sie News To Use für die neuesten Erkenntnisse und Analysen
No comments:
Post a Comment